

LICEO SCIENTIFICO STATALE "G.B.QUADRI" VICENZA

DOCUMENTO DEL CONSIGLIO DI CLASSE

(OM n.205/2019 art. 6) Anno scolastico 2020-2021

RELAZIONE DEL DOCENTE

All. A

1	Classe:5D	Indirizzo:	Scienze Applicate	Materia: Matematica	Docente: Laura Pasetti
	Classe.JD	1114111220.	Scienze Applicate	iviateria. iviaterriatica	Doceme. Laura Pasetti

1. OBIETTIVI RAGGIUNTI DALLA CLASSE

La valutazione della classe utilizza la seguente tabella di corrispondenza

Meno di 6		insufficiente	
6		sufficiente	
6 - 7		discreto	
7 - 8		buono	
8 - 10		ottimo	

In relazione alla programmazione curricolare sono stati conseguiti i seguenti obiettivi

1.1. Obiettivi raggiunti relativamente alle conoscenze

In riferimento all'acquisizione dei contenuti, e quindi di concetti, termini, argomenti, procedure, regole e metodi, la conoscenza della classe appare discreta. Alcuni allievi hanno raggiunto un livello ottimo.

1.2. Obiettivi raggiunti relativamente alle competenze

Relativamente all'utilizzazione delle conoscenze acquisite, nella risoluzione di problemi, nell'effettuazione di compiti affidati e in generale nell'applicazione concreta di quanto appreso la classe ha raggiunto un livello discreto/buono.

1.3. Obiettivi raggiunti relativamente alle capacità

Relativamente alla rielaborazione critica delle conoscenze acquisite, al loro autonomo e personale utilizzo e in rapporto alla capacità di organizzare il proprio apprendimento la classe ha raggiunto un livello sufficiente/discreto.

2. CONTENUTI DISCIPLINARI E TEMPI DI REALIZZAZIONE

Argomenti svolti fino al 15 maggio

Periodo mese/i

1. Limiti di funzioni (Ripasso):

Settembre

- a. Intervalli della retta reale e intorni (di un punto, di infinito)
- b. Insiemi limitati e illimitati, estremi di un insieme
- c. Punti isolati e punti di accumulazione.
- d. Definizione e significato di limite, di limite destro e sinistro.
- e. Teorema di unicità del limite, teorema di permanenza del segno e teorema dei due carabinieri (con dimostrazioni)

2. Calcolo di limiti:

Ottobre/Novembre

- a. Operazioni sui limiti e limite della funzione composta
- b. Forme indeterminate
- c. Limiti notevoli (con dimostrazione)
- d. Infinitesimi, infinito, loro confronto
- e. Funzioni continue: definizioni e teoremi di Weierstrass, dei valori intermedi e di esistenza degli zeri (enunciato e applicazioni).
- f. Punti di discontinuità di una funzione
- g. Asintoti verticali, orizzontali e obliqui.
- h. Applicazioni allo studio di funzione

3. Limiti di successioni

Novembre

- a. Successioni monotone, limitate e illimitate
- b. Limite di una successione, successioni convergenti, divergenti e indeterminate
- c. Calcolo del limite di una successione.

4. Derivate

Dicembre/Gennaio

- a. Derivata di una funzione, definizione e interpretazione geometrica
- b. Derivate fondamentali
- c. Algebra delle derivate, derivata di una funzione composta, derivata di $[f(x)]^{g(x)}$ e derivata della funzione inversa
- d. Derivate di ordine superiore al primo
- e. Equazione della retta tangente
- f. Derivabilità e continuità, punti di non derivabilità
- g. Applicazioni alla Fisica
- h. Differenziale, definizione, interpretazione geometrica, calcolo e sue applicazioni

5. Teoremi del calcolo differenziale

Gennaio

- a. Teorema di Rolle
- b. Teorema di Lagrange e conseguenze del teorema di Lagrange (con dimostrazione)
- c. Teorema di Cauchy (con dimostrazione)
- d. Teorema di De L'Hopital

6. Massimi, minimi e flessi

Febbraio

- a. Definizioni di massimi e minimi relativi e assoluti, concavità e flessi
- b. Punto stazionario, teorema di Fermat
- c. Ricerca di massimi e minimi relativi con la derivata prima
- d. Punto di flesso orizzontale
- e. Flessi e derivata seconda
- f. Problemi di ottimizzazione

7. Studio delle funzioni Febbraio

- a. Studio completo e rappresentazione del grafico di una funzione reale di variabile reale
- b. Risoluzione di equazioni e disequazioni per via grafica
- c. Risoluzione approssimata di un'equazione (separazione delle radici e metodo di bisezione)
- 8. Integrali indefiniti

Marzo

- a. Primitive e integrale indefinito, condizione sufficiente di integrabilità
- b. Proprietà dell'integrale indefinito: omogeneità, additività e linearità
- c. Integrali indefiniti immediati
- d. Calcolo di integrali indefiniti con il metodo di sostituzione e per parti
- e. Integrale indefinito di funzioni razionali fratte
- 9. Integrali definiti

Aprile

- a. Definizione di integrale definito e sue proprietà
- b. Teorema della media (con dimostrazione)
- c. Teorema fondamentale del calcolo integrale (con dimostrazione)
- d. Calcolo dell'integrale definito
- e. Calcolo delle aree
- f. Calcolo di volumi di solidi di rotazione (rotazione attorno all'asse x, attorno all'asse y, metodo dei gusci cilindrici, metodo delle sezioni
- g. Integrali impropri: funzione con numero finito di punti di discontinuità nell'intervallo di integrazione, integrale in un intervallo illimitato
- h. Applicazioni alla Fisica: cinematica, lavoro, carica e corrente elettrica.
- 10. Equazioni differenziali

Aprile/Maggio

- a. Definizione e classificazione di equazione differenziale, integrale generale e integrale particolare.
- b. Equazioni differenziali del primo ordine: problema di Cauchy
- c. Equazioni del tipo y' = f(x), equazioni a variabili separate e a variabili separabili
- d. Equazioni lineari del primo ordine omogenee e non omogenee
- e. Equazioni del secondo ordine a coefficienti costanti: omogenee e non omogenee
- f. Applicazioni alla Fisica: decadimento radioattivo, cinematica e dinamica, circuiti RC

Argomenti che saranno trattati prima della fine delle lezioni

Probabilità e statistica

- a. Definizione di probabilità, eventi dipendenti e indipendenti, ripasso e applicazione alla soluzione di esercizi
- b. Permutazioni e combinazioni
- c. Distribuzioni di probabilità (cenni)

Ore effettivamente svolte dal docente durante l'anno, alla data attuale:

110

Firma degli studenti rappresentanti di classe

Rollo Chilus

3. METODOLOGIE DIDATTICHE

Si sono utilizzate lezioni frontali/dialogate, alternate a esercitazioni individuali, lavori con il foglio di calcolo e con Geogebra, assegnati tramite GoogleClassroom e integrati/discussi in classe, ricerche e approfondimenti individuali, seguiti da presentazione in classe.

4. STRUMENTI E MATERIALI DIDATTICI

Testi:

Libro in adozione: Bergamini, Barozzi, Trifone, Manuale blu2.0 di matematica, volumi 4B e 5, Ed.

Zanichelli.

Libro per approfondimenti: Kranat, Cambridge International AS and A Level Mathematics: Probability and

Statistics 1

Software: Geogebra e Foglio di Calcolo

Appunti delle Lezioni

5. STRUMENTI DI VERIFICA

Si sono svolte:

prove scritte, comprensive di esercizi e problemi;

prove orali, con domande teoriche (enunciati e dimostrazioni di teoremi) ed esercizi/problemi; prove integrative: presentazione di approfondimenti, completati da domande su tutto il programma, per simulare la prova orale dell'Esame di Stato.

6. ATTIVITA' DI RECUPERO

Il recupero è stato svolto con le seguenti modalità:

- in itinere, con tutta la classe;
- in itinere, con gruppi di allievi
- Sportello di Dipartimento.

Firma del docente